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Abstract— This paper investigates the task of the open-
ended interactive robotic manipulation on table-top scenar-
ios. While recent Large Language Models (LLMs) enhance
robots’ comprehension of user instructions, their lack of visual
grounding constrains their ability to physically interact with
the environment. This is because the robot needs to locate the
target object for manipulation within the physical workspace.
To this end, we introduce an interactive robotic manipulation
framework called Polaris, which integrates perception and
interaction by utilizing GPT-4 alongside grounded vision models.
For precise manipulation, it is essential that such grounded
vision models produce detailed object pose for the target
object, rather than merely identifying pixels belonging to them
in the image. Consequently, we propose a novel Synthetic-
to-Real (Syn2Real) pose estimation pipeline. This pipeline
utilizes rendered synthetic data for training and is then
transferred to real-world manipulation tasks. The real-world
performance demonstrates the efficacy of our proposed pipeline
and underscores its potential for extension to more general
categories. Moreover, real-robot experiments have showcased
the impressive performance of our framework in grasping
and executing multiple manipulation tasks. This indicates its
potential to generalize to scenarios beyond the tabletop. More
information and video results are available here: https://star-
uu-wang.github.io/Polaris/.

I. INTRODUCTION

The longstanding goal of robotics research has been to
bridge the interaction between robots and humans for real-
world grasping [1], [2] and manipulation tasks [3], [4].
Natural language instructions play a central role in open-
ended human-robot interaction, guiding robots to accomplish
various tasks [5], [6], [7], [2]. Recently, Large Language
Models (LLMs) and Vision Language Models (VLMs)
have made significant progress [8]. They possess extensive
world knowledge and have demonstrated strong abilities to
understand human instructions, leading to the development
of numerous methods for translating language and visual
inputs into robotic manipulation actions [9], [10], [11], [12].
These methods, with their diverse attempts across different
dimensions of robotics research, prompt further consideration
on how to fully leverage the perceptual and interactive
capabilities of LLMs to support various robotic manipulations.

We explore the issue of open-ended interactive robotic
manipulation on tabletop-level scenarios, such as "Please
help me tidy the table". Previous studies [13], [14], [15] have
attempted to tackle such challenges by employing LLMs as
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Fig. 1. Polaris: A tabletop-level object robotic manipulation framework
centered on syn2real visual grounding driven by open-ended interaction
with GPT-4. Users engage in continuous, open-ended interaction with LLM,
which maintains an ongoing comprehension of the scenes. 3D synthetic data
is integrated into the training of grounded vision modules to facilitate the
execution of real-world tabletop-level robotic tasks.

task planners, translating high-level instructions into action
sequences they comprehend. However, existing methods for
real-world robotic manipulation tasks often lack robustness in
visual grounding and tend to overlook object affordances and
action feasibility. Vision-centric robotic manipulation equips
robots with environmental perceptual abilities, enabling action
planning based on perception. Nevertheless, this necessitates
high-quality, real-world annotated data.

To tackle the challenge of open-ended interactive robotic
manipulation, we use the readily available and powerful Large
Language Model (LLM)—GPT-4 [16] to comprehend and
extract the target query from the user’s intricate description.
Once the target query for an object is established, the
subsequent step involves the robot locating and grasping
the object. Visual grounding enables agents to interpret the
visual environment based on these queries, thus aiding in
more intricate tasks and interactions [17]. Additionally, the
6 Degree-of-Freedom (DoF) object pose estimation serves
as a basis for accurate manipulation [18]. Hence, it is
imperative to develop a grounded vision module combined
with a pose estimation model to obtain object poses for
subsequent motion planning. A recent method [18] has
extended pose estimation from instance-level to category-level
and introduced a category-level dataset with pose annotations.
However, this dataset only includes a limited number of
categories. To encompass a broader range of categories,
we propose an efficient pipeline for generating synthetic
data. Leveraging off-the-shelf rendering technologies, we can
produce synthetic images of objects with pose annotations.
The purely synthetic data generated through rendering is
utilized to train the category-level pose estimation model
and conduct inference in real-world scenes, representing
a novel Synthetic-to-Real (Syn2Real) approach. Ultimately,
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we seamlessly integrate the vision grounding module with
the LLM and the robot planner, establishing an open-ended
interactive robot framework.

Our framework, named Polaris, features syn2real visual
grounding driven by GPT-4 to enhance tabletop-level interac-
tive robotic manipulation, as depicted in Fig. 1. Specifically,
the framework relies on LLM for scene perception and open-
ended human-robot interaction. It trains the pose estimation
model within the grounded vision module using purely
synthetic data, interprets queries provided by the LLM, and
ultimately executes tabletop-level tasks through a 6D pose-
based planner, enabling continuous interaction.

Our contributions can be summarized as follows: (1) We
have introduced an automated method for generating depth
images and pose annotations when 3D models are available,
leveraging a lightweight rendering engine. Additionally, we
have trained MVPoseNet6D using synthetic data and evalu-
ated the model on real-world images. The results indicate that
our method achieves syn2real category-level pose estimation
and can be readily expanded to cover a wider range of
categories. (2) Building upon syn2real visual grounding and
GPT-4, we have proposed a novel framework called Polaris
to address the challenge of open-ended interactive robotic
manipulation. (3) We demonstrated Polaris’s capabilities
through real-robot grasping and manipulation experiments,
showcasing efficient interaction, operational effectiveness, and
satisfactory success rates across various tasks.

II. RELATED WORK

LLMs for Robotics. Embodied intelligence mainly focuses
on building systems where agents can purposefully exchange
energy and information with the physical environment. It
requires a correct understanding of the embodied perception
process from a high-dimensional cognitive perspective to
a low-dimensional execution perspective [19], [20]. Recent
work [9] has shown that using LLMs as robotic brain can
unify egocentric memory and control by studying downstream
tasks of active exploration and embodied question answering.
However, such new framework’s perception system has
flaws in its visual grounding, hindering robot-environment
interaction, which will be addressed in this paper. On the
other hand, there are zero-shot or few-shot methods [21],
[14], [12], [13], [11], [15] that utilize LLMs as task planners,
decomposing high-level instructions into executable primitive
tasks. These methods assume the ability of robots to execute
advanced commands. Unfortunately, they have not yet fully
supported the open-ended interaction with robot and not
robust enough due to insufficient perception of environment.
Instead, our framework addresses these issues, providing a
flexible paradigm that bridges users, LLMs, and robots, offer-
ing a new perspective on universal human-robot interaction.
Category-level Object Pose Estimation. The 6D object
pose estimation is crucial in various applications, such as
robotic manipulation and autonomous driving. The objective
of category-level object pose estimation is to predict the
6D pose and 3D size of diverse instances belonging to a
shared category. The current mainstream methods can be

divided into two types: RGB-D based and depth based only.
RGB-D based methods [18], [22], [23], [24], [25] often
leverages color cues for improved object recognition, which
can capture fine-grained texture details, enhancing feature
extraction. However, RGB-D based methods often encounter
some challenges, such as being sensitive to lighting conditions
and color variations. Depth based methods [26], [27], [28],
[29], [30] rely solely on depth information, which reduce
data complexity and lead to faster processing potentially.
The above methods often involve scanning real objects or
annotating images of real scenes. Based on the recognition
that SAR-Net [26] is depth based only and the affordance of
synthetic data, we opt to further enhance the category-level
pose estimation capabilities of SAR-Net and realize real-
world application via synthetic-to-real. Given the framework
demands for operational efficiency, our work aims to support a
large scale of categories with a minimal number of parameters,
thereby establishing a lightweight and easily expandable
category-level data rendering and training architecture.
Vision-centric Interactive Robot Manipulation. In the
realm of vision-centric interactive robot manipulation, recent
advancements focus on enhancing robots’ ability to perform
tasks by learning from human demonstrations and integrating
LLMs or Large Multimodal Models (LMMs) for better un-
derstanding and execution of vision-centric tasks. Interactive
robot manipulation learning from human demonstrations fre-
quently demands high-quality human videos or teleoperation
data [31], [32], [33], [34], [35], [36], [37]. Simultaneously,
it requires dependable reinforcement learning or imitation
learning algorithms for the training of robot policies [38], [39],
[40], [41], [42], [43]. While these methods offer considerable
flexibility, they all necessitate the collection of human
demonstrations through various means to learn different
tasks, often requiring real-world physical annotations [44],
[45]. Interactive robotic manipulation frequently requires
affordance learning for objects based on visual inputs, where
zero-shot [10], [46], few-shot [47], [48], and open-ended
learning [49], [50], [51] are of significant interest. Open-
ended learning methods facilitate the update and expansion
of category sets and also provide a broader interaction space
for human-in-loop tasks. Our proposed model employs a
convenient and efficient method to render synthetic data for
training the pose estimation models within the grounded
vision module. By integrating with GPT-4, it addresses object
affordance and supports open-ended human-robot interaction.

III. PROBLEM FORMULATION

We present a novel open-ended interactive robotic manipu-
lation problem via syn2real visual grounding and LLMs here,
which shall have the following desired properties.
Property 1. 3D synthetic data rendering: For arbitrary 3D
model assets, categorized by object class, synthetic instance
data is needed to be collected from various viewpoints
through a virtual engine and then injected into the training
of subsequent category-level pose estimation model.
Property 2. Open-ended interactive robotic manipulation:
Based on scene inputs acquired from RGB-D camera, the
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Fig. 2. Overview of our framework. (a) 3D synthetic data rendering. During rendering, we automatically generate various synthetic data by loading 3D
model assets into a simulation engine and deploying dynamic virtual camera. We use the Fibonacci Sphere Sampling to select rendering viewpoints, to
generate corresponding RGB, depth, pose, and observable point clouds. (b) The vision-centric robotic task pipeline. Given the image of the scene, which
GPT-4, prompted as a scene perception and interaction LLM, interprets to understand instructions and describe objects and tasks. Our parser interprets
these descriptions. We freeze the pre-trained detector and segmentation model within the grounded vision models and use a synthetic dataset to train the
category-level pose estimation model. After retrieving object attributes, the model predicts poses based on the scene, allowing a 6D pose robot manipulation
planner to execute real-world tasks.

prompted LLM must comprehend the scene and understand
the user’s natural language instructions, labelling the target
objects for interaction and specific task descriptions. The
robot must grasp and execute tasks according to the 6D pose
of the target objects.

In terms of above descriptions, we give the typical setups
to validate our framework: (i) We are particularly interested
in table-level robotic tasks, where the variety of reachable
objects is confined within an almost known domain. Hence,
we opt to render common table objects category data for
training the pose estimation model. However, based on our
proposed rendering method, it is feasible to collect additional
synthetic pose data from existing datasets ( [52], [53], etc) or
custom 3D modeling data, which can be generalized to the
training of pose estimation models with greater capacity. (ii)
Furthermore, we prefer the manner of interactive instructions.
Specifically, user natural language instructions may not
directly specify the objects for interaction (some queries
may even be ambiguous), necessitating understanding and
labelling by the LLMs. Additionally, continuous interaction
is required, with the LLMs needing to keep up with scene

changes and next user instructions.

IV. METHOD

Polaris is a sophisticated interactive robotic manipulation
framework integrating perception and interaction, employing
a LLM, specifically GPT-4, with grounded vision models. An
overview of the proposed Polaris framework is presented in
Fig. 2. In the ensuing subsections, we will detail the synthetic
data rendering (Sec. IV-A), synthetic-to-real category-level
pose estimation (Sec. IV-B, and open-ended interactive robotic
manipulation design (Sec. IV-C).

A. 3D Synthetic Data Rendering

Given a 3D model M from the model collections M,M ∈
M, we aim to render the RGB images I , depth image
D, partial point cloud P and calculate the 6-DoF pose
transformation T = (R, t) and 3D size s of the model from
current camera viewpoints.

Leveraging the SAPIEN [54] simulation environment, we
utilize a subset of 3D models from the PartNet-Mobility
dataset [53], supplemented with custom CAD modeling



data. To acquire the rendered images for each 3D model,
we position the model at the origin of the world frame,
variously adjusting the camera viewpoint to capture and render
corresponding depth images. The PartNet-Mobility dataset
comprises 2,000 articulated objects with motion annotations
and rendering materials. This dataset serves as a valuable
resource for advancing research in generalizable computer
vision and manipulation, representing a continuation of the
pioneering work in ShapeNet and PartNet.

In particular, to capture a broader range of camera view-
points, we employ Fibonacci sphere sampling method to
evenly distribute the camera positions across a sphere, as
shown in Fig. 2 (a). Additionally, we introduce random in-
plane rotations to each camera’s orientation, expanding the
coverage to encompass a more diverse set of camera angles.

Ultimately, we rendered a total of 24 tabletop-level object
classes, including {"Bottle", "Box", "Dispenser", "Remote",
"Camera", "Clock", "Eyeglasses", "Fan", "Faucet", "Globe",
"Kettle", "Keyboard", "Knife", "Lamp", "Laptop", "Mouse",
"Pen", "Phone", "Pliers", "Scissors", "Stapler", "USB", "Pack-
aging", "Sponge"}, with 1K instances, resulting in 300K
depth images along with poses, as illustrated in Fig. 2 (a).
Additionally, the corresponding RGB and point cloud were
generated simultaneously. This stage of the process solely
relied on the CPU, making it very efficient. The pseudocode
for the rendering process is provided by Algorithm 1.

Algorithm 1: Synthetic Data Rendering
Input: 3D models I containing N categories
Output: Fibonacci sphere rendering data for instances

1 Initialization: Set the rendering engine and parameters
2 for i← 1 to N do
3 The number of instances W contained in class i;
4 for j ← 1 to W do
5 Load the URDF model Uj of instance j;
6 (Xmin, Ymin, Zmin)←∞,

(Xmax, Ymax, Zmax)← −∞
7 The number of parts S contained in model Uj ;
8 for k ← 1 to S do
9 Load the points Pk

j of the part k;
10 (xmin, ymin, zmin)← Pk

j min
,

(xmax, ymax, zmax)← Pk
j max

11 Update global extreme point (Xmin, Ymin, Zmin)
and (Xmax, Ymax, Zmax);

12 Compute scale Sj by (SX
j , SY

j , SZ
j )←

(Xmax −Xmin, Ymax − Ymin, Zmax − Zmin);
13 Generate camera poses τ by Sphere Sampling;
14 for n, τn ← enumerate(τ) do
15 Mount dynamic virtual camera τn;
16 Get instance pose λn

j ← τn−1;
17 Update render to get RGB, PointCloud and Depth

under τn;

B. Syn2Real Category-level Pose Estimation

Considering the efficient runtime requirements of the
robotic manipulation, we aim to support a greater number of
object categories with a smaller number of parameters and to
robustly facilitate pose estimation in tabletop scenarios under
various lighting conditions. We extend the output dimension
of the original decoder in the depth-only SAR-Net [26] from

6 to 24 to accommodate the 24 new categories. By utilizing
synthetically rendered multi-view data, the training process
remains consistent with the original SAR-Net. This enables
the model to learn shared geometric features among intra-
category instances from different views of observed shapes.
For the processing of category-level templates, we randomly
select a general instance within the class, perform Object
Canonicalization to align the coordinate system, and then
execute Poisson Sampling and Farthest Point Sampling (FPS)
to extract the category-level template point cloud. We transfer
the model trained on synthetic data to the inference module,
to support real-world category-level object pose estimation.

C. Open-ended Interactive Robotic Manipulation

As shown in Fig. 2 (b), our open-ended robot interaction
framework primarily comprises three modules: a LLM that
supports scene perception and human-robot interaction, a
vision grounding module, and a robotic manipulation planner
based on the 6D pose of objects.
Perception and Interaction LLM. Based on scene inputs
from a depth camera, the framework we aim to construct
should be capable of perceiving the scene, identifying object
assets on the tabletop, and engaging in continuous interaction
with the user based on the affordance of these assets and user
requirements. By leveraging GPT-4’s capabilities in image
understanding, semantic extraction, and its powerful ability
to comprehend user instructions, we call the GPT-4 API and
prompt it to serve as the high-level perception and interaction
brain for the robot. Firstly, we provide GPT-4 with a system-
level explanation. This explanation is designed to guide the
LLM to affirm its role and confine it within a specific domain,
ensuring robustness and professionalism in task analysis
during robotic manipulation. The primary task of the LLM
before interacting with users is to understand and learn about
the spatial specifics of tasks, rather than initiating work
directly. Simultaneously, we expect the responses from the
LLM to be task-oriented, necessitating specific object queries
and task descriptions. We have constructed a parser that, upon
the LLM’s comprehension of the user’s intent during the i
round of interaction and subsequent user confirmation of the
robotic instructions, extracts the object attributes Ai and task
descriptions Ti from the instructions. These are then passed
on to the vision grounding module and the robot planner.
Visual Grounding. The vision grounding module, serving
as the core of vision-centric robotic manipulation, receives
raw RGB images of the scene captured by depth cameras,
depth information, and attributes Ai derived from the parsing
of instruction provided by the LLM. We treat the attributes Ai

as a query, which is then sent to the frozen Grounded-Light-
HQSAM. Grounded-Light-HQSAM is an integrated model
that incorporates Grounding DINO [55] and HQ-SAM [56].
Grounding DINO functions as an open-set object detector,
utilizing visual-language modality fusion to generate bounding
boxes and labels with free-form referring expressions. This
process involves multiple phases, including a feature enhancer,
a language-guided query selection module, and a cross-
modality decoder. Once the grounding box of the target object



is obtained, it is used as a prompt for the segmentation model.
Grounded-Light-HQSAM is capable of generating refined
object masks in a lightweight and relatively fast manner.
These masks are then used to crop the depth pixels belonging
to the object, facilitating follow up pose and size estimation.
After obtaining the depth, grounding mask and category label
of the target object, we use the trained MVPoseNet6D to
recover the real-world object 6-DoF pose and 3D size in the
camera coordinate system, which provides information about
the object’s state in the current scene. Then, the estimated
pose is transformed into the robot’s base coordinate system
for further motion planning.
6D Pose Robot Manipulation Planner. First of all, we
need to answer a question: Why is it necessary to consider
the object’s pose instead of using a straightforward grasp
pose estimation method? - While methods for direct 6-DoF
grasp pose estimation [57], [58], [59] have made signifi-
cant progress, their scope remains limited and is primarily
applicable to pick-and-place operations. In our framework,
we integrate pose estimation methods because the state of
objects in 3D space is crucial for calculating meaningful
manipulation points in various operational tasks, such as
pouring water, handover, and some compositional tasks. We
believe that object pose provides robots with rich contextual
knowledge before proceeding with the motion planning. To
ensure the extensibility of Polaris, we follow the principle of
first inferring the object’s pose and then calculating useful
target gripper poses for precise manipulations. Particularly, as
the pose of intra-category instances are pre-canonicalized [18],
it becomes advantageous to define category-level grasp poses
relevant to each task. These defined grasp poses are then
transformed from object coordinates to camera coordinates
using the estimated object 6D pose. The robot executes motion
planning to move its gripper to the target grasp pose to
complete each task. Thus, we have constructed a task-oriented
6D Pose Robot Manipulation Planner.

V. EXPERIMENT

We conducted a series of experiments, which included
evaluating the synthetic-to-real pose estimation in both single-
object and multi-object real-world scenarios, as well as testing
the proposed Polaris framework against several baseline
methods. The goals of the experiments are 1) to investigate
the feasibility of applying MVPoseNet6D, trained purely on
synthetic data, in real-world applications; 2) to demonstrate
that our Polaris can efficiently achieve elaborate human-robot
interaction in various scenarios; 3) to show the accuracy of
our tabletop-level robotic manipulation system.

Polaris was deployed on a PC workstation with an Intel
i9-13900K CPU and an NVIDIA RTX 6000 Ada Generation
GPU. We used a KINOVA GEN2 robot with a Realsense
D435 depth camera mounted in an eye-in-hand configuration.
The tabletop-level testing objects are shown in Fig. 3.

A. Real-world Object Pose Estimation Evaluation

Synthetic-to-real genaralizability is crucial for models
trained solely on synthetic data, and the accuracy of pose

Fig. 3. Real-world experimental objects. We test our method using
different instances from multiple tabletop-level objects, some of which are
confusing in terms of color, shape, rigidity, deformability, and functionality.

estimation is foundational for vision-centric interactive robotic
manipulation.. Therefore, we visually represent our predic-
tions by displaying the predicted 6D pose and 3D size in the
form of a tight-oriented bounding box, as in Fig. 4.

To confirm the effectiveness of our model in real-world
scenarios, we evaluated instances of 24 predefined tabletop-
level categories within a single scene. For each instance,
we captured real-world images from various viewpoints. As
illustrated in Fig. 4 (a), we visually present a subset of the
pose estimation results. The results are depicted using tightly
oriented bounding boxes. The object is visibly positioned
within and aligned with the box, showing the model’s accurate
estimation performance. Since the real-world test instances
are not used to train the model, these results demonstrate
the synthetic-to-real capability of our data rendering method
and the model. Furthermore, the examples given in Fig. 4 (b)
indicate that the model is capable of consistently generating
accurate pose and size results, even with significant changes in
viewpoint. To thoroughly evaluate the model’s performance in
cluttered environments with diverse backgrounds and objects,
we place the target instance in a scene with numerous objects.
The multi-object scene poses more challenges, as the objects
are randomly placed, and some objects occlude each other.
This setting allows us to assess the robustness of our method
in real-world environments. As depicted in Fig. 4 (c), some
objects are partially occluded, but the predicted pose and size
remain accurate. These results demonstrate the effectiveness
of our method and prove that using our approach allows for a
fast and scalable extension of the pose estimator to multiple
categories, enabling adaptability to a wider range of objects.

B. Open-ended Interactive Real-Robot Experiments

The open-ended interactive robot experiments mainly
consist of two parts: instance-oriented grasping and task-
oriented manipulation. Different methods and tasks share the
same experimental environment and hardware.
Instance-oriented Grasping. We conducted instance-
oriented grasping experiments using the Polaris framework
and the following constructed baselines: 1) RandomGrasp
randomly selects a grasping target from the instance space gen-
erated by the Polaris vision grounding module until it grasps
the object requested by the user. 2) Polaris (w/o 3DGCN)
omits the trained 3DGCN [60] used in MVPoseNet6D, where
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Fig. 4. Results of real-world object pose estimation. (a) Test results of single-object scene. We present a subset of the visualization results of the pose
and size estimation using the trained MVPoseNet6D model. The outcomes are represented with a tightly oriented 3D bounding box and colored XYZ-axis.
(b) The scene with same object under multiple views. We show the pose of a bottle under different views. (c) The scene with multiple objects under the
same view. We show the pose estimation of different objects in several cluttered scenes.

TABLE I
RESULTS OF INSTANCE-ORIENTED GRASPING

Method Accuracy(%) # Questions Time(ms) Success / Trials Success Rate(%)

RandomGrasp * * 43.7 22 / 60 36.67

Ours (full model) 93.52 1.36 509.6 55 / 60 91.67
Ours (w/o 3DGCN) 90.07 1.41 442.7 53 / 60 88.33

Ours (w/o Light-HQSAM | w/ SAM) 87.92 1.97 849.6 49 / 60 81.67
Ours (w/o GPT-4 | w/ GPT-3.5-turbo) 93.37 3.82 552.3 55 / 60 91.67

Ours (w/o FSP | w/ FHemiSP) 82.69 1.39 497.8 42 / 60 70.00

TABLE II
RESULTS OF TASK-ORIENTED MANIPULATION

Method Single-object Scene Success(%) Multi-object Scene Success(%) Compositional Tasks Total Success(%)
Pick-and-Place Handover Stack Tidy

Ours 18 / 20 17 / 20 87.50 10 / 15 12 / 15 73.33 6 / 10 78.75

1.Locate the [green bottle] and perform
the {pose estimation}. 
2.Grasp the [purple bottle] and perform
the {stack}. 
Please confirm it.

Please stack the bottles on the table,
keeping the green bottle still.

Confirmed.

Scene A

Stack Bottles

…
1.Grasp the [mouse] and perform the
{pick and place}. 
2.Grasp the [clock] and perform the
{pick and place}. 
3.Grasp the [USB] and perform the
{pick and place}. 
Please confirm it.

Tidy table. Arrange the workbench,
keeping the keyboard still.

Confirmed.

Tidy Table

Scene B

…

Use the black kettle to fill the bottle
on the far right.

Confirmed.

A collision ouccured, please wipe it
with an available object.
Grasp the [sponge] and perform the
{drag}. Please confirm it.

Wipe 

Table

💥 crash

Scene C - I

Scene C - II

Collision Scene

Fig. 5. Examples of open-ended interactive real-robot experiments. Manipulation tasks for three different base scenes are presented, including excerpts
from the interaction process between the user and the LLM, the pose estimation results of the manipulated objects in different scenes, and the keyframes
of the robot manipulation. Scene A: Stack bottles on the table. Scene B: Tidy the items of workbench. Scene C: A compositional task considering the
affordance of objects after a sudden collision.

the primary function of 3DGCN is to filter out speckle and
background noise of the different category-level objects point
cloud captured by the depth camera. 3) Polaris (w/o Light-

HQSAM | w/ SAM) replaces Light-HQSAM with the original
pre-trained SAM [61]. 4) Polaris (w/o GPT-4 | w/ GPT-
3.5-turbo) replaces GPT-4 with GPT-3.5-turbo [62], and



the environment’s assets are provided by both the labelling
model and manually by the user. The task-level prompts
for the LLM(GPT-3.5-turbo) are more verbose and complex.
5) Polaris (w/o FSP | w/ FSemiSP) replaces Fibonacci
sphere sampling with Fibonacci hemisphere sampling during
synthetic data rendering. In Table I, we report the runtime,
the number of questions asked, runtime, the visual accuracy
(calculate the deviation between the estimated 6D pose of
real-world objects and manually annotated poses), and the
number of successful attempts for each method. First of all,
the full model of Polaris achieves a visual accuracy of 93.52%,
which demonstrates the feasibility and effectiveness of our
proposed syn2real pose estimation method. The substantial
increase in grasping success rate compared to RandomGrasp
(from 36.67% to 91.67%) validates that the integration of our
prompted LLM and vision grounding can help understand
user intentions with efficient interaction states (averaging only
1.36 questions per successful grasp). The 3DGCN is trained
for the classes used in our experiments to further optimize
point clouds, as seen by the improvement in visual accuracy in
our table scenes with plain backgrounds. The replacement of
the segmentation model demonstrates that our integration of
Light-HQSAM significantly reduces runtime (from 849.6ms
to 509.6ms), enabling higher grounded vision accuracy at
a faster operational efficiency. Furthermore, we conducted
an ablation analysis on the synthetic data rendering method,
where the visual accuracy obtained from hemisphere sampling
decreased by about 10 percentage points. Fibonacci Sphere
sampling supported a wider coverage of viewpoints, enabling
the handling of more generalized scenes in real-world testing.
Task-oriented Manipulation. The high visual accuracy and
grasping success rates provide a strong guarantee for task-
oriented manipulation. To assess Polaris’s capability in robotic
manipulation, we evaluated its performance on single-object,
multi-object, and compositional tasks, as shown in Table II.
Quantitative results indicate that our method performs well
in task-oriented manipulation, achieving success rates of
87.5% for single-object performance and 73.33% for multi-
object performance, with an overall success rate of 78.75%
across all tasks. Simultaneously, a qualitative analysis of
the three specific examples of open-ended interactive robot
manipulation in Fig. 5 reveals that our method successfully
accomplished real-world tasks and effectively supported
continuous interaction.

VI. CONCLUSION

This paper introduces Polaris, a novel framework for open-
ended interactive robotic manipulation based on LLMs and
syn2real visual grounding. Our syn2real pose estimation
method, trained with synthetic data, performs well in real-
world tests. Tabletop-level real-robot experiments provide
validation of Polaris’s effectiveness. We anticipate that Po-
laris will significantly enhance generalization across diverse,
complex robotic manipulation scenarios.
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